XS-Stabilizer Formalism

Xiaotong Ni (MPQ) joint work with Buerschaper, Van den Nest

Outline

- Motivation
- Example: double semion model
- Summary of properties

Definition

• Pauli-S group: $\mathcal{P}_n^s = \langle \alpha, X, S \rangle^{\otimes n}$

$$\alpha = \sqrt{i}$$
 $S = \text{diag}(1, i)$ $S^{-1}XS = -iXZ$ $X \otimes S \otimes Z$

• Given $G = \langle g_1, \dots, g_m \rangle \subset \mathcal{P}_n^s$

We call a state $|\psi\rangle$ XS-stabilizer state if (uniquely)

$$g_j|\psi\rangle = |\psi\rangle$$

When not unique, we call it XS-stabilizer code

Motivation

Pauli stabilizer formalism

- (Innocently looking) tensor product operators
- Most properties from commutation relation and linear algebra
- Numerous applications: Fault tolerance, measurement based computation, etc

XS stabilizer

- (Still innocently looking) tensor product operators
- Many properties from commutation relation and linear algebra
- Simple to learn

Toric (surface) code

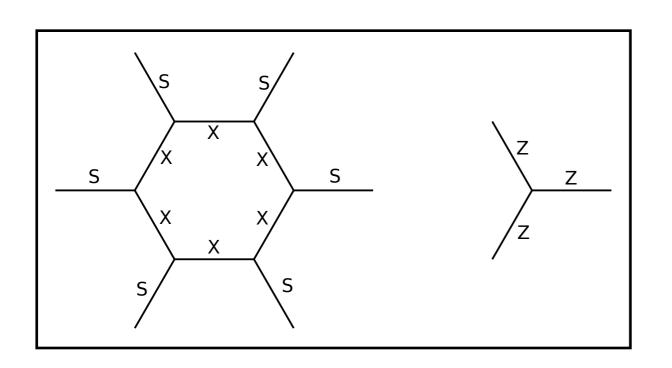
Toric (surface) code

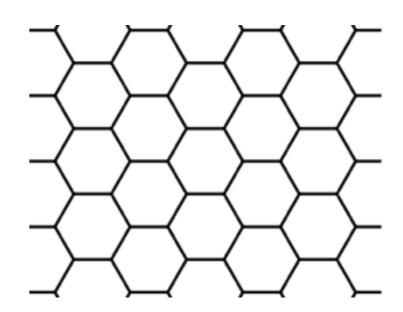
Practical way to build an active quantum memory

Toric (surface) code

- Practical way to build an active quantum memory
- Great example to understand basic properties of systems with topological order
 - Exactly solvable and simple
 - Contains features like anyons, string operators, boundary, twist, etc.

XS-stabilizer: double semion and more





Other motivations

Other motivations

 (Efficient) representation of a larger class of quantum states

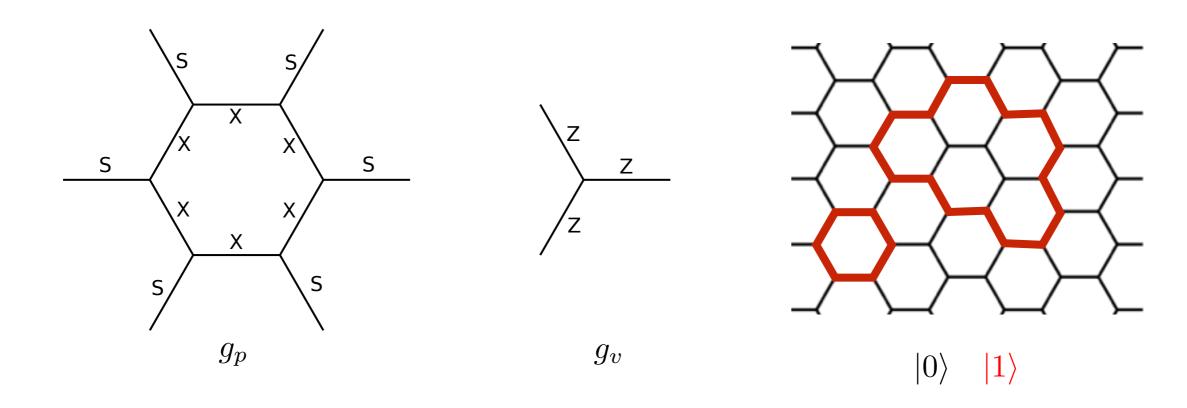
Other motivations

- (Efficient) representation of a larger class of quantum states
- A class of commuting projector problems that are in NP (P)

An introduction to the Double semion model

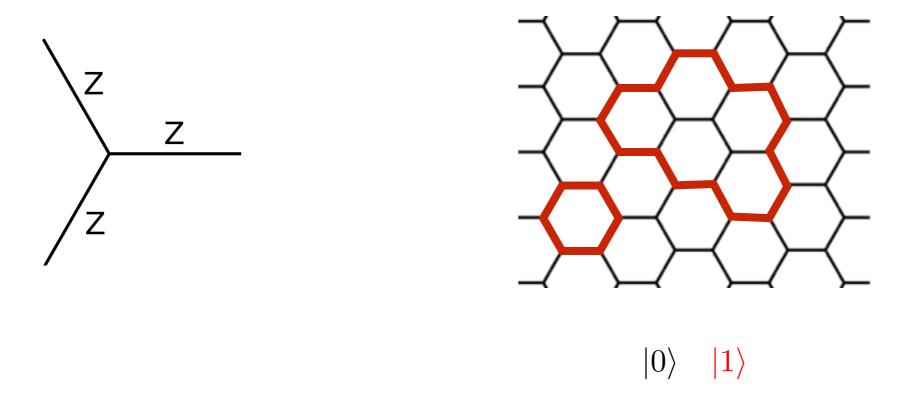
Double semion model

$$\sum_{x \text{ is close loops}} (-1)^{\text{number of loops}} |x\rangle$$



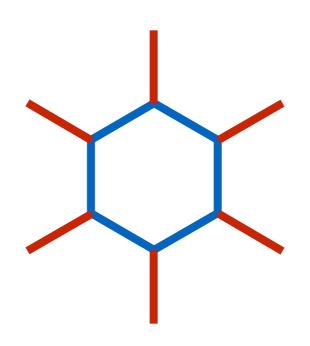
$$g_p|\psi\rangle = g_v|\psi\rangle = |\psi\rangle$$

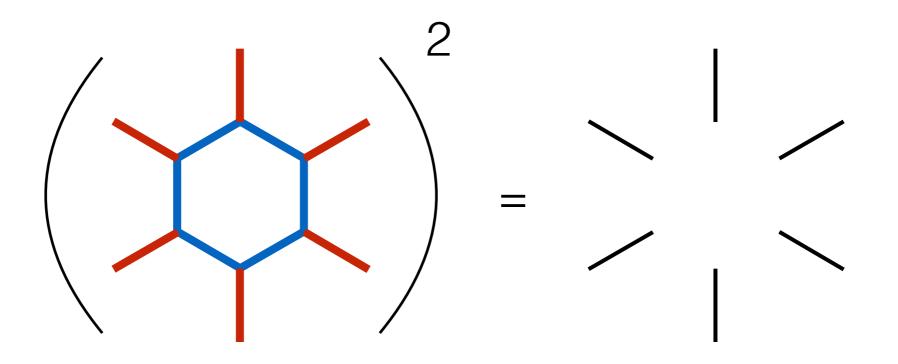
Z-type operator



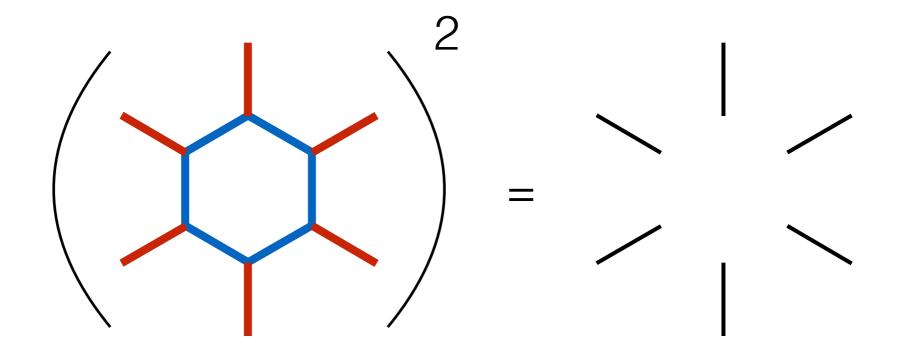
Gauge invariant subspace

X S Z

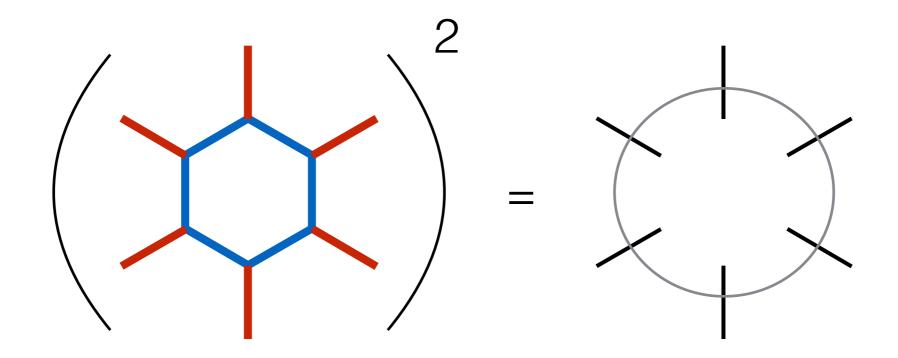




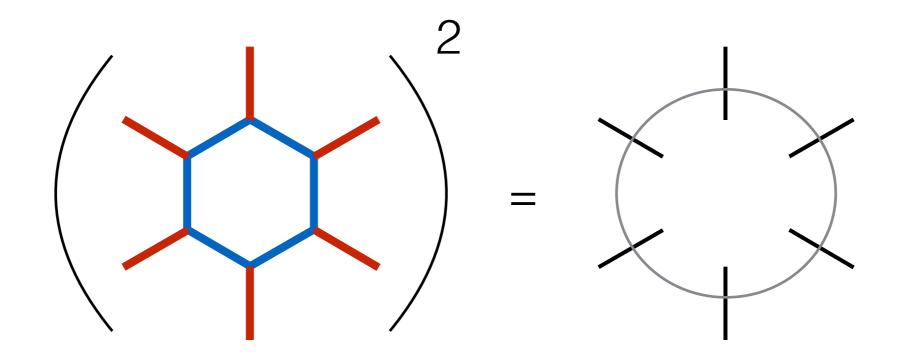
X S 7



The square is equal to 1 inside gauge invariant subspace



The square is equal to 1 inside gauge invariant subspace

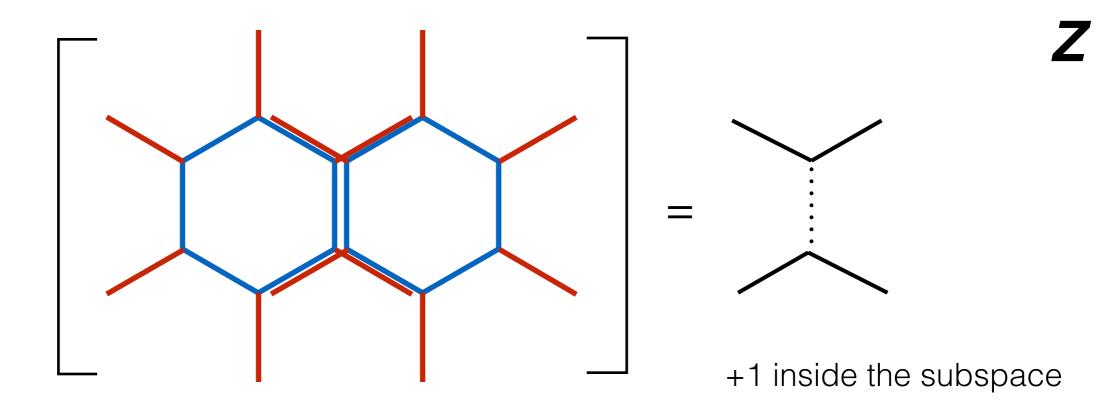


- The square is equal to 1 inside gauge invariant subspace
- Eigenvalue of original operator is ±1 inside the subspace

$$[X,S]=XSX^{-1}S^{-1}=iZ$$


```
[X,S]=XSX-1S-1=iZ
```


X S Z XS XS³



Commuting Hamiltonians

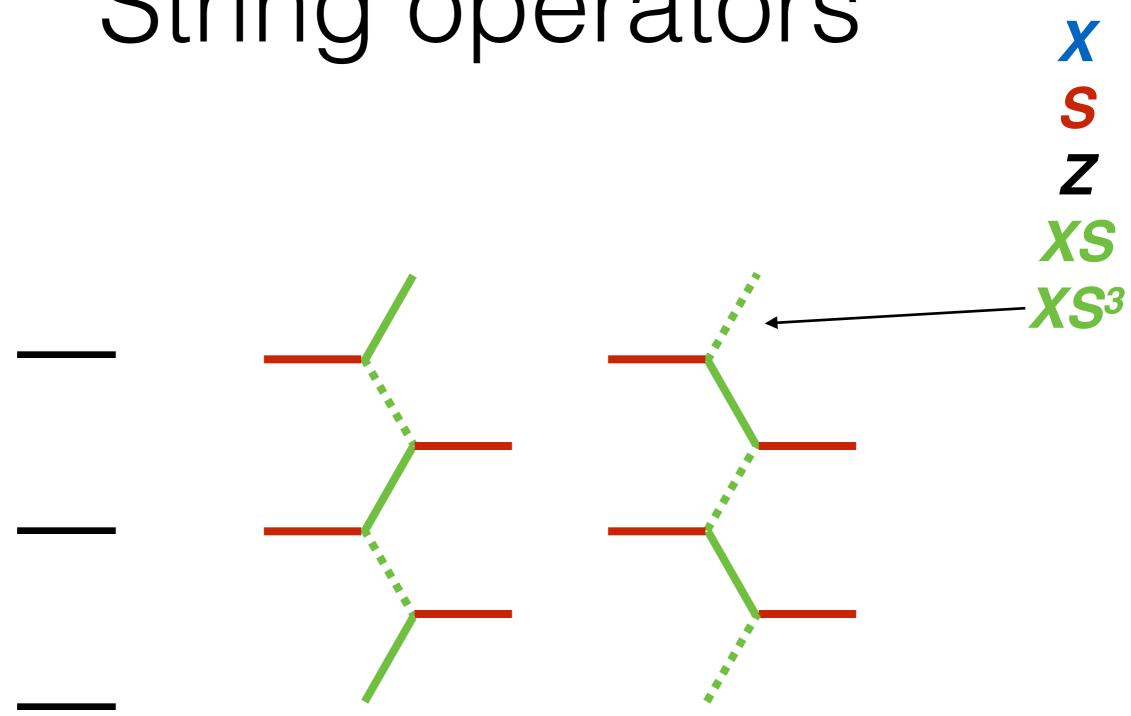
- X S Z
- The Plaquette operators are hermitian and commuting in the gauge invariant subspace
- The gauge invariant subspace = locally project into the +1 eigenspace of Z-type operators

Commuting Hamiltonians

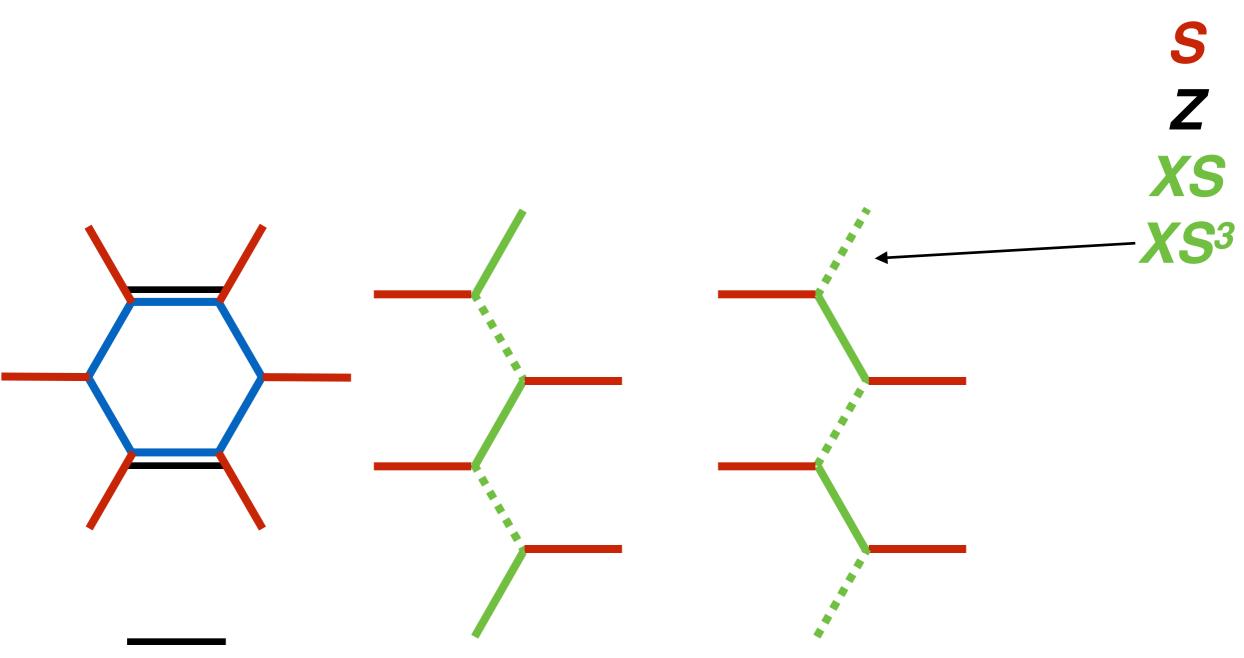
- X S Z
- The Plaquette operators Tare hermitian and commuting in the gauge invariant subspace
- The gauge invariant subspace = locally project into the +1 eigenspace of Z-type operators

This is a general procedure!

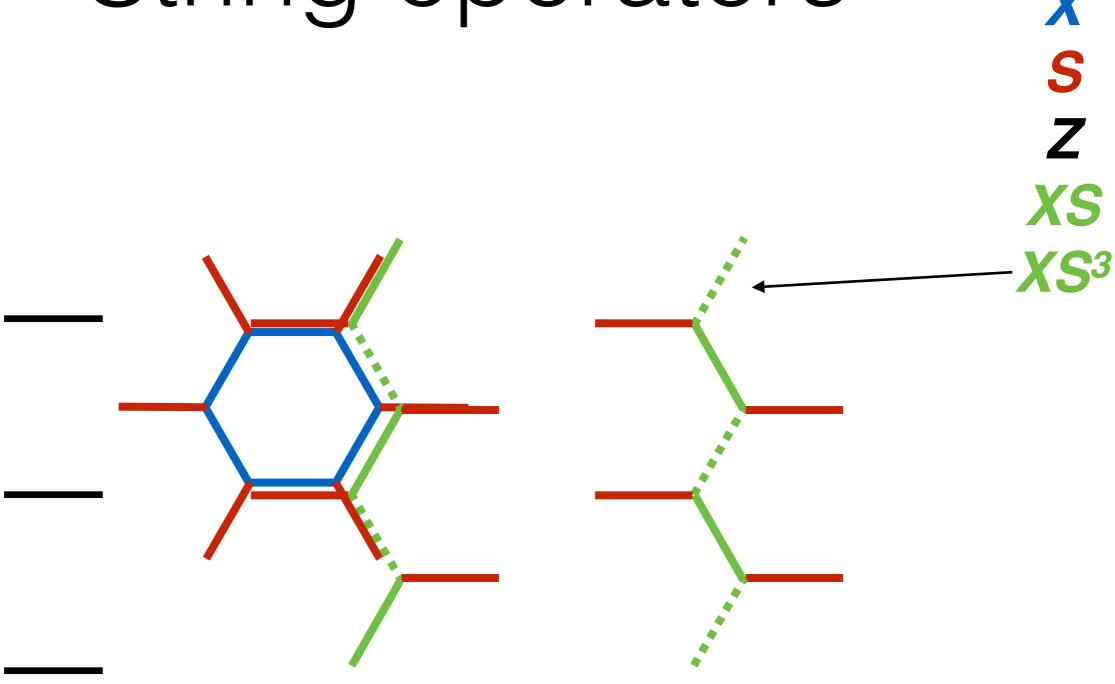
String operators

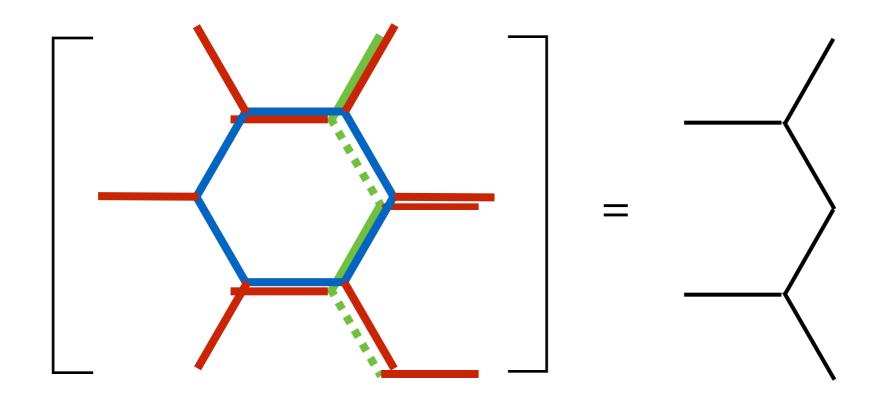


String operators



String operators

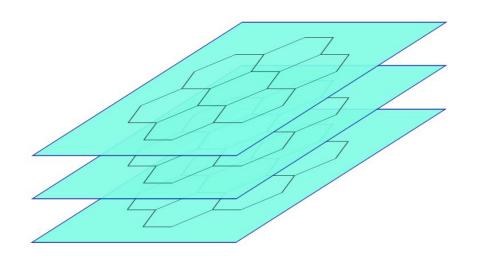




S Z XS XS³

Twisted quantum double

- Closed loops on each layer, with a phase add to each configuration
- (A subclass) can be described by XS stabilizer.
 Some of them support non-abelian anyons.



Summary of properties

Computational complexity

• Given $G = \langle g_1, \dots, g_m \rangle \subset \mathcal{P}_n^s$, is there a state stabilized by it?

Computational complexity

• Given $G = \langle g_1, \dots, g_m \rangle \subset \mathcal{P}_n^s$, is there a state stabilized by it?

$$i^3S_j\otimes S_k\otimes S_l$$
:

NP-complete

1 in 3 SAT

Computational complexity

• Given $G = \langle g_1, \dots, g_m \rangle \subset \mathcal{P}_n^s$, is there a state stabilized by it?

 $i^3S_j\otimes S_k\otimes S_l$

•

NP-complete

1 in 3 SAT

Diagonal stabilizers have no **S**

Efficient

Degeneracy 2^k

Computational complexity

• Given $G = \langle g_1, \dots, g_m \rangle \subset \mathcal{P}_n^s$, is there a state stabilized by it?

 $i^3S_j\otimes S_k\otimes S_l$:

NP-complete
1 in 3 SAT

Double semion

Diagonal stabilizers have no **S**

Efficient

Degeneracy 2^k

Form of the state

- We can construct a specific basis $\{\psi_j\}$ for the code space.
- For each ψ_j , we can efficiently find a circuit of (first) Clifford and (then) $\{T, CS, CCZ\}$ which generate the state
- $\langle \psi_j | P | \psi_k \rangle$ can be computed for Pauli operator P efficiently.

• For a given XS-stabilizer state $|\psi\rangle$ and a bipartition (A, B), we can efficiently find a Pauli state $|\varphi_{AB}\rangle$ and $U_A\otimes U_B$ such that $U_A\otimes U_B|\psi\rangle=|\varphi_{AB}\rangle$.

- For a given XS-stabilizer state $|\psi\rangle$ and a bipartition (A, B), we can efficiently find a Pauli state $|\varphi_{AB}\rangle$ and $U_A\otimes U_B$ such that $U_A\otimes U_B|\psi\rangle=|\varphi_{AB}\rangle$.
- Indirect way to compute entropy for XS states.

- For a given XS-stabilizer state $|\psi\rangle$ and a bipartition (A, B), we can efficiently find a Pauli state $|\varphi_{AB}\rangle$ and $U_A\otimes U_B$ such that $U_A\otimes U_B|\psi\rangle=|\varphi_{AB}\rangle$.
- Indirect way to compute entropy for XS states.
- Reflects the fact that toric code and double semion have very similar entanglement properties.

Better codes?

Better codes?

 A more generalized (and interesting) stabilizer formalism?

Better codes?

- A more generalized (and interesting) stabilizer formalism?
- A larger class of commuting projector problems that in NP

Better codes?

- A more generalized (and interesting) stabilizer formalism?
- A larger class of commuting projector problems that in NP
- Understanding entanglement properties better

Thanks

Sydney modern art museum